3 Lecture 3 Notes: Measures of Variation. The Boxplot. Definition of Probability

3.1 Week 1 Review

Creativity is more than just being different. Anybody can plan weird; that's easy. What's hard is to be as simple as Bach. Making the simple, awesomely simple, that's creativity. Charles Mingus

3.2 Week 1 Review

Example 1

3.3 Measures Variation

Measure of spread/dispersion/variation:

- 1. Range: Max Min
- 2. Variance: The average of the squared differences from the mean

$$s^{2} = \sum_{i=1}^{n} \frac{(x_{i} - \bar{x})^{2}}{n-1} = \sqrt{\frac{n(\sum_{i=1}^{n} x_{i}^{2}) - \sum_{i=1}^{n} x_{i}^{2}}{n(n-1)}}$$
(1)

3. Standard Deviation: Measure of the variation of observations about the mean.

$$s = \sqrt{\sum_{i=1}^{n} \frac{(x_i - \bar{x})^2}{n - 1}}$$
(2)

4. Coefficient of Variation: Ratio of the standard deviation to the mean (normalized measure of dispersion)

$$CV = \frac{\sigma}{\mu} * 100\%$$
: Population (3)

$$CV = \frac{s}{\bar{x}} * 100\% : \text{Sample}$$
(4)

5. Interquartile Range: (Soon)

3.4 Empirical Rule

Rules for the Bell Shaped Distribution (Show picture and fill in)

- 1. 68 %: data falls falls with ______ standard deviation of the mean
- 2. 95 %: data falls falls with $____$ standard deviation of the mean
- 3. 99.7 %: data falls falls with $_$ standard deviation of the mean

Example 2: Heights of women have a bell-shaped distribution with mean of 163 cm and a standard deviation of 6 cm. What percentage of women have heights between 151 and 175 cm?

3.5 Random Variable

 \boldsymbol{X} denotes a random a number that can be any number within a population

3.6 Z-Score

How far is the random variable away from the mean? Use the Z-score. Its units are standard deviations.

$$Z = \frac{X - \mu}{\sigma} \quad \text{Population} \tag{5}$$

$$Z = \frac{X - \bar{x}}{s} \quad \text{Sample} \tag{6}$$

First Definition of an **Outlier**:

- Ordinary values: $-3 \le Z \le 3$
- Outlier: $z \leq -3$ or $z \geq 3$

Example 3: X = 36 inches (Radius of RedWood Tree) and the average is $\bar{x} = 33.25$ and standard deviation s = 1.71. Find the z score and determine if it is an outlier.

3.7 Quartiles

Procedure For finding Quartiles

- 1. Sort Data
- 2. Q_2 (Second Quartile, Median): 50% of observations above it and 50% of observations below it.
- 3. Q_1 (First Quartile): Value with 75% of observations above it, and 25% below it. (same rules for even number of observations)
- 4. Q_3 (Third Quartile): 75% of observations are below it and 25% above it. (same rules for even number of observations)
- 5. Interquartile Range (IQR): $Q_3 Q_1$

Second Definition of an **Outlier**: Lower Fence $LF = Q_1 - 1.5 * IQR$

Upper Fence $UF = Q_1 + 1.5 * IQR$

Outlier if X < LF or X > UF

3.8 Percentiles

Percentile of X is defined as:

$$\frac{\# \text{ values less than X}}{\text{total } \# \text{ of values}}$$
(7)

0	1	1	3	17	32	35	44	48	86
87	103	112	120	121	130	131	149	164	167
173	173	198	208	210	222	227	234	245	250
253	265	266	277	284	289	290	313	477	491

Example 4: Find Min Q_1 , Q_2 , and Q_3 , Max. What percentile is 17? Is 17 an outlier?

- Min: _____
- Q₁: _____
- Q₂: _____
- Q₃: _____
- Max: _____

The percentile of 17 is UF =

LF =

So 17 is not an outlier.

3.9 Important Notions

Important Characteristics of a data set:

- 1. Center mean/mode/median
- 2. Spread variance/standard deviation/Range
- 3. Distribution Symmetric, skewed right, or skewed left, bimodal

3.10 Boxplots

Boxplot are used to show a five number summary:

- 1. Min
- 2. Q_1
- 3. Q_2
- 4. Q_3
- 5. Max

3.10.1 Boxplots and Distributions

3.11 Probability

Probability: Underlying foundation of inferential statistics Definitions:

- An Event: Any collection of results or outcomes of a procedure. Example: Tossing 1 die (a procedure) and getting even numbers: $A = \{2, 4, 6\}$
- A Simple Event: It is an outcome or event that can not be further broken down into simple pieces. Example: Outcomes when you roll a die: {1} or {2} or {3} or {4} or {5} or {6}
- Sample Space: All possible simple events for a procedure. Example: Tossing a die. Possible outcomes are $S = \{1, 2, 3, 4, 5, 6\}$

Notation:

- *P* denotes Probability
- A, B, C denote specific events
- P(A) denotes the probability of event A occurring

Example 5 Procedure: Rolling 1 die. Simple Event: $\{1\}$ Sample Space: $S = \{1, 2, 3, 4, 5, 6\}$

1. Find the Probability of a Particular Event A defined as rolling a 1

 $P(A) = \frac{\text{Number of Event A}}{\text{Total number of Events}} =$

Example 6 Procedure: Rolling two dice. - Simple Events:

	1	2	3	4	5	6
1	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)	(1, 6)
2	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)	(2, 6)
3	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3, 6)
4	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)
5	(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)	(5, 6)
6	(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)

1. Find the Probability of a Particular Event B defined as rolling two dice equal to one of the pairs below

 $B = \{ \{1,1\}, \{2,2\}, \{3,3\}, \{4,4\}, \{5,5\}, \{6,6\} \}.$

 $P(B) = \frac{\text{Number of Event B}}{\text{Total number of Evens}} =$