3 Lecture 3 Notes: Measures of Variation. The Boxplot. Definition of Probability

3.1 Week 1 Review

Creativity is more than just being different. Anybody can plan weird; that's easy. What's hard is to be as simple as Bach. Making the simple, awesomely simple, that's creativity. Charles Mingus

3.2 Week 1 Review

Example 1

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad

3.3 Measures Variation

Measure of spread/dispersion/variation:

1. Range: Max - Min
2. Variance: The average of the squared differences from the mean

$$
\begin{equation*}
s^{2}=\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)^{2}}{n-1}=\sqrt{\frac{n\left(\sum_{i=1}^{n} x_{i}^{2}\right)-\sum_{i=1}^{n} x_{i}^{2}}{n(n-1)}} \tag{1}
\end{equation*}
$$

3. Standard Deviation: Measure of the variation of observations about the mean.

$$
\begin{equation*}
s=\sqrt{\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)^{2}}{n-1}} \tag{2}
\end{equation*}
$$

4. Coefficient of Variation: Ratio of the standard deviation to the mean (normalized measure of dispersion)

$$
\begin{gather*}
C V=\frac{\sigma}{\mu} * 100 \%: \text { Population } \tag{3}\\
C V=\frac{s}{\bar{x}} * 100 \%: \text { Sample } \tag{4}
\end{gather*}
$$

3.4 Empirical Rule

Rules for the Bell Shaped Distribution (Show picture and fill in)

1. 68 \%: data falls falls with \qquad standard deviation of the mean
2. 95% : data falls falls with \qquad standard deviation of the mean
3. 99.7% : data falls falls with \qquad standard deviation of the mean

Example 2: Heights of women have a bell-shaped distribution with mean of 163 cm and a standard deviation of 6 cm . What percentage of women have heights between 151 and 175 cm ?

3.5 Random Variable

X denotes a random a number that can be any number within a population

3.6 Z-Score

How far is the random variable away from the mean? Use the Z-score. Its units are standard deviations.

$$
\begin{gather*}
Z=\frac{X-\mu}{\sigma} \quad \text { Population } \tag{5}\\
Z=\frac{X-\bar{x}}{s} \quad \text { Sample } \tag{6}
\end{gather*}
$$

First Definition of an Outlier:

- Ordinary values: $-3 \leq Z \leq 3$
- Outlier: $z \leq-3$ or $z \geq 3$

Example 3: $X=36$ inches (Radius of RedWood Tree) and the average is $\bar{x}=33.25$ and standard deviation $s=1.71$. Find the z score and determine if it is an outlier.

3.7 Quartiles

Procedure For finding Quartiles

1. Sort Data
2. Q_{2} (Second Quartile, Median): 50% of observations above it and 50% of observations below it.
3. Q_{1} (First Quartile): Value with 75% of observations above it, and 25% below it. (same rules for even number of observations)
4. Q_{3} (Third Quartile): 75% of observations are below it and 25% above it. (same rules for even number of observations)
5. Interquartile Range ($I Q R$): $Q_{3}-Q_{1}$

Second Definition of an Outlier: Lower Fence $L F=Q_{1}-1.5 * I Q R$

Upper Fence $U F=Q_{1}+1.5 * I Q R$

Outlier if $X<L F$ or $X>U F$

3.8 Percentiles

Percentile of X is defined as:

$$
\begin{equation*}
\frac{\# \text { values less than } X}{\text { total } \# \text { of values }} \tag{7}
\end{equation*}
$$

0	1	1	3	17	32	35	44	48	86
87	103	112	120	121	130	131	149	164	167
173	173	198	208	210	222	227	234	245	250
253	265	266	277	284	289	290	313	477	491

Example 4: Find Min Q_{1}, Q_{2}, and Q_{3}, Max. What percentile is 17 ? Is 17 an outlier?

- Min: \qquad
- Q_{1} : \qquad
- Q_{2} : \qquad
- Q_{3} : \qquad
- Max: \qquad
The percentile of 17 is
$U F=$
$L F=$
So 17 is not an outlier.

3.9 Important Notions

Important Characteristics of a data set:

1. Center - mean/mode/median
2. Spread - variance/standard deviation/Range
3. Distribution - Symmetric, skewed right, or skewed left, bimodal

3.10 Boxplots

Boxplot are used to show a five number summary:

1. Min
2. Q_{1}
3. Q_{2}
4. Q_{3}
5. Max

3.10.1 Boxplots and Distributions

3.11 Probability

Probability: Underlying foundation of inferential statistics Definitions:

- An Event: Any collection of results or outcomes of a procedure.

Example: Tossing 1 die (a procedure) and getting even numbers:
$A=\{2,4,6\}$

- A Simple Event: It is an outcome or event that can not be further broken down into simple pieces.
Example: Outcomes when you roll a die: $\{1\}$ or $\{2\}$ or $\{3\}$ or $\{4\}$ or $\{5\}$ or $\{6\}$
- Sample Space: All possible simple events for a procedure.

Example: Tossing a die. Possible outcomes are $S=\{1,2,3,4,5,6\}$
Notation:

- P denotes Probability
- A, B, C denote specific events
- $P(A)$ denotes the probability of event A occurring

Example 5 Procedure: Rolling 1 die. Simple Event: $\{1\}$
Sample Space: $S=\{1,2,3,4,5,6\}$

1. Find the Probability of a Particular Event A defined as rolling a 1

$$
P(A)=\frac{\text { Number of Event A }}{\text { Total number of Events }}=
$$

Example 6 Procedure: Rolling two dice. - Simple Events:

	1	2	3	4	5	6
1	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
2	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
3	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
4	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
5	$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$
6	$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$

1. Find the Probability of a Particular Event B defined as rolling two dice equal to one of the pairs below $B=\{\{1,1\},\{2,2\},\{3,3\},\{4,4\},\{5,5\},\{6,6\}\}$.

$$
P(B)=\frac{\text { Number of Event B }}{\text { Total number of Evens }}=
$$

